Multilevel Minimum Cross Entropy Thresholding using Artificial Bee Colony Algorithm

نویسنده

  • Ming-Huwi Horng
چکیده

The minimum cross entropy thresholding (MCET) has been widely applied in image processing. In this paper, a new multilevel MCET algorithm based on the artificial bee colony (ABC) algorithm is proposed. The proposed thresholding algorithm is called ABC-based MCET algorithm. Four different methods including the exhaustive search, the honey bee mating optimization (HBMO), the particle swarm optimization (PSO) and the quantum particle swarm optimization (QPSO) methods are also implemented for comparison with the results of the proposed method. The experimental results demonstrate that the proposed ABC-based MCET algorithm can efficiently search for multiple thresholds that are very close to the optimal ones selected by using the exhaustive search method. Compared with the other three thresholding methods, the segmentation results using the ABC-based MCET algorithm is the best. It is promising to encourage further research for applying the HBMO algorithm to complex problems of image processing and pattern recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Multi-Level Thresholding Based on Maximum Tsallis Entropy via an Artificial Bee Colony Approach

This paper proposes a global multi-level thresholding method for image segmentation. As a criterion for this, the traditional method uses the Shannon entropy, originated from information theory, considering the gray level image histogram as a probability distribution, while we applied the Tsallis entropy as a general information theory entropy formalism. For the algorithm, we used the artificia...

متن کامل

Nature Inspired Metaheuristic Algorithms for Multilevel Thresholding Image Segmentation - A Survey

Segmentation is one of the essential tasks in image processing. Thresholding is one of the simplest techniques for performing image segmentation. Multilevel thresholding is a simple and effective technique. The primary objective of bi-level or multilevel thresholding for image segmentation is to determine a best thresholding value. To achieve multilevel thresholding various techniques has been ...

متن کامل

Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization

Image entropy thresholding approach has drawn the attentions in image segmatation. The endeavor of this paper is focused on multilevel thresholding using the minimum cross enrtop criterion. In the literature, the particle swarm optimization (PSO) had been applied to conducting the thresold selection. The adopted algorithm used in this paper is the honey bee mating optimization (HBMO). In experi...

متن کامل

Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm

In this paper, optimal thresholds for multi-level thresholding in an image are obtained by maximizing the Tsallis entropy using cuckoo search algorithm. The method is considered as a constrained optimization problem. The solution is obtained through the convergence of a meta-heuristic search algorithm. The proposed algorithm is tested on standard set of images. The results are then compared wit...

متن کامل

Material composition detection using an image segment with an improved artificial bee colony algorithm

In the process of material composition detection, image analysis is an inevitable problem. Multilevel thresholding based on the OTSU method is one of the most popular image segmentation techniques. The increase of the number of thresholds increases with the exponential increase in computing time. In order to overcome this problem, this paper proposes an artificial bee colony algorithm with a tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013